

Frage

Kann man Konzentrationsangaben untereinander umrechnen?

Antwort:

Es gibt verschiedene Einheiten zur Angabe von Konzentrationen, die sich nach dem Aggregatzustand des Stoffes, dem Anwendungsgebiet und der geforderten Genauigkeit richten. Konzentrationen beschreiben also den Anteil eines Stoffes in einem Bezugsmedium. Im Folgenden erhalten Sie eine systematische Übersicht über die gängigen Konzentrationsangaben sowie deren typische Einsatzbereiche:

1. Volumenbezogene Konzentrationsangaben

Einheit	Bedeutung	Typischer Einsatzbereich
Vol%	Volumenprozent: Anteil in 100 Volumenteilen	Höhere Konzentrationen von Gasen und Dämpfen z. B. bei Sauerstoff in Luft oder Explosionsgrenzen
ppm (parts per million)	1 Teil pro 1.000.000 Teile (≈ 0,0001 Vol%)	Messung geringer Konzentrationen z. B. in der Gasmesstechnik, Umweltanalytik
ppb (parts per billion)	1 Teil pro 1.000.000.000 Teile	Sehr niedrige Konzentrationen, z. B. bei Luftschadstoffen, Reinraumtechnik
ppt (parts per trillion)	1 Teil pro 1.000.000.000.000 Teile	Ultrareine Messverfahren, z. B. Halbleiterproduktion

Bei der Erfassung von Luftschadstoffen wird die Konzentration stets in Bezug zur umgebenden Luft angegeben. Um praxisgerechte und leicht handhabbare Zahlenwerte zu erhalten, erfolgt die Angabe in geeigneten Einheiten.

Hohe Konzentrationen werden üblicherweise in **Volumenprozent (Vol.-%)** dargestellt, also als Verhältnis von 1 Teil Stoff zu 100 Teilen Luft.

Beispiel:

Atmosphärische Luft enthält etwa 21 Vol.-% Sauerstoff – das bedeutet, dass auf 100 Volumenteile Luft etwa 21 Volumenteile Sauerstoff entfallen.

Für sehr geringe Konzentrationen verwendet man die Einheiten ppm (parts per million) oder ppb (parts per billion), entsprechend 1 Teil auf eine Million bzw. eine Milliarde Teile Luft. So entspricht 1 ppm etwa einem Würfelzucker in einem Tanklastwagen, während 1 ppb dem Verhältnis von fünf Personen zur Weltbevölkerung gleichkommt.

Der Zusammenhang zwischen diesen Einheiten lautet:

1 Vol.-% = 10.000 ppm = 10.000.000 ppb

2. Massenbezogene Konzentrationsangaben

Einheit	Bedeutung	Typischer Einsatzbereich
mg/m³	Milligramm pro Kubikmeter	Arbeitsplatzgrenzwerte (AGW), Luftverunreinigungen, TRGS 900
μg/m³	Mikrogramm pro Kubikmeter	Feinstaub-, Schwermetallbelastungen in der Umweltüberwachung
ng/m³	Nanogramm pro Kubikmeter	Dioxine, PCB-Messungen im Umweltbereich

3. Stoffmengenbezogene Konzentrationsangaben

Einheit	Bedeutung	Typischer Einsatzbereich
mol/m³	Mol pro Kubikmeter	Chemisch-physikalische Berechnungen, Laboranalytik
mmol/mol Millimol pro Mol		Gasanalytik, z. B. bei der Messung von Spurengasen

4. Massenanteil und Massenkonzentration (feste und flüssige Stoffe)

Einheit	Bedeutung	Typischer Einsatzbereich	
g/L	Gramm pro Liter	Flüssigkeitsanalytik, Wasserchemie	
mg/L	Milligramm pro Liter	Trinkwasseranalysen, chemische Untersuchung	
wt-% (Gewichtsprozent) Massenanteil in Prozent		Technische Spezifikationen bei Mischungen	

Umrechnungen

Neben gasförmigen Substanzen enthält die Luft auch sogenannte **Aerosole** – fein verteilte feste oder flüssige Stoffe. Aufgrund der geringen Partikelgrößen ist eine Volumenangabe hier nicht praktikabel; daher wird die Konzentration von Aerosolen in **mg/m³** angegeben.

Umrechnung		Vol%	ppm	ppb	
Vol%	=	10 L/m³ 1 cL/L	1	104	107
ppm	=	mL/m³ μL/m³	104	1	10³
ppb	=	μL/m³ nL/L	10 ⁻⁷	10 ³	1

Umrechnung	Vol%	ppm	ppb
------------	------	-----	-----

g/L	=	10 L/m³	1	10³	10 ⁶
		1 cL/L			
mg/L	=	mL/m³	10 ⁻³	1	10 ³
		μL/m³			
ppb	=	μL/m³	10 ⁻⁶	10 ⁻³	1
		nL/L			

Da jedes Volumen eine bestimmte Masse enthält, können Volumenkonzentrationen gasförmiger Stoffe in Massenkonzentrationen umgerechnet werden – und umgekehrt. Allerdings hängen diese Berechnungen von Temperatur und Druck ab, da die Dichte eines Gases diesen Einflussgrößen unterliegt. Für arbeitsplatzbezogene Messungen gelten als Standardbedingungen eine Temperatur von 20 °C und ein Druck von 1.013 hPa. Die Umrechnung erfolgt mithilfe einfacher physikalischer Formeln.

Umrechnung mg/m³ in ppm:

$$C [ppm] = \frac{Molvolumen}{molare Masse}$$

Ex [Vol.-%] = Explosionsgrenze in Vol.-%

$$C[mg/m^3] = \frac{molare\ Masse}{Molvolumen}$$

Legende:

Molvolumen: 24,1 L/mol bei 20 °C und 1.013 hPa (beliebigen Gases)

molare Masse ist gasspezifisch

Zusammenfassung der Verwendung nach Einsatzgebiet

Einsatzgebiet	Übliche Konzentrationseinheiten
Explosionsschutz	Vol%, ppm (für UEG/OEG, Zündfähigkeit)
Arbeitsplatzmessung (z. B. TRGS 900)	mg/m³, ppm (Grenzwerte für Gefahrstoffe)
Umweltüberwachung (Außenluft)	μg/m³, ppb (Feinstaub, Ozon, Stickoxide)
Medizin / Toxikologie	ppm, μg/m³, ng/m³ (z. B. bei Innenraumbelastungen)
Laboranalytik / Chemie	mol/m³, g/L, mg/L (lösliche Stoffe, Reaktionen)
Gastechnische Messung / Sensorik	ppm, ppb, mol/mol