

Frage

Was ist der Unterschied zwischen "antistatisch", "leitfähig" und "ableitfähig"?

Antwort:

Der Unterschied zwischen "antistatisch", "leitfähig" und "ableitfähig" liegt in der elektrischen Leitfähigkeit und der Funktion im Umgang mit elektrostatischer Aufladung. Diese Begriffe sind besonders im Explosionsschutz, Elektronikschutz (ESD) und in der Materialtechnik wichtig.

Übersicht: Vergleich der Begriffe

Begriff	Oberflächenwiderstand (typisch)	Eigenschaften	Anwendung
Leitfähig	< 10 ⁴ Ω	Leitet elektrischen Strom sehr gut	Elektronik, Ableitmatten, EMV
Ableitfähig	$10^4 - 10^9 \Omega$	Leitet elektrische Ladungen langsam, kontrolliert ab	ESD-Schutz, Bodenbeläge
Antistatisch	> 10 ⁹ Ω	Verhindert statische Aufladung, leitet aber kaum Strom	Verpackungen, Kleidung, Möbel

1. Leitfähig

- Sehr niedriger elektrischer Widerstand
- Strom fließt nahezu ungehindert → nicht geeignet in explosionsgefährdeten Bereichen ohne Schutzmaßnahmen
- Materialien: Metalle, Graphit, spezialisierte Polymere

Vorsicht:

Hoch leitfähige Materialien können gefährlich sein, wenn z. B. durch Funkenentladung Zündquellen entstehen.

2. Ableitfähig (dissipativ)

- Kontrollierte Ableitung statischer Ladung
- Wichtig für den Explosionsschutz und elektrostatisch gefährdete Bauteile (ESD)
- Kein plötzlicher Stromfluss wie bei leitfähigen Materialien

Typischer Wert: 10⁵–10⁸ Ohm

Anwendung z. B. bei: ESD-Böden, Verpackungsmaterial, Arbeitsmatten

3. Antistatisch

- Ziel: Statische Aufladung gar nicht erst entstehen lassen
- Oberflächen haben hohe Ableitwiderstände, aber verhindern durch spezielle Eigenschaften (z. B. geringe Reibung, Beschichtungen) die Ladungstrennung
- Nicht automatisch ableitfähig!

Achtung:

Wird oft mit "ableitfähig" verwechselt, ist aber weniger sicher bei zündfähigen Umgebungen, da keine gezielte Erdung erfolgt.

Normen & Explosionsschutz

In ATEX-Umgebungen (explosionsgefährdete Bereiche) wird unterschieden:

Kategorie	ESD/ATEX-Anwendung	
Leitfähig	im EX-Schutz: empfohlen	
Ableitfähig	im EX-Schutz: wenn nicht "leitfähig", dann mindestens "ableitfähig"	
Antistatisch	im EX-Schutz: nur in nicht-kritischen Bereichen	

Normen:

- EN 61340-5-1 (ESD-Schutz)
- IEC 60079-0 (ATEX-Grundlagen)

Fazit:

Begriff	Zweck
Antistatisch	Verhindert Aufladung
Ableitfähig	Leitet statische Ladung kontrolliert ab
Leitfähig	Leitet starken Strom – bei EX relevant!

Zwei typische Beispiele aus der Praxis

- aus dem Explosionsschutz (ATEX)
- aus dem elektrostatischen Entladungsschutz (ESD).

Beispiel 1:

EX-Zone – Bodenbelag in einer explosionsgefährdeten Anlage

Ziel:

Vermeidung von elektrostatischer Entladung, die eine zündfähige Atmosphäre (Gas, Dampf, Staub) entzünden könnte.

Benötigt wird:

• Ableitfähiger Bodenbelag (z. B. < 108 Ohm)

- Erdungssystem, das den Boden und ggf. Personal ableitet
- Antistatische Schuhe oder Erdungsbänder, damit der Mensch gegenüber dem Boden nicht aufgeladen bleibt

Nicht geeignet:

 Nur "antistatischer" Boden ohne definierte Ableitfähigkeit → kein zuverlässiger Schutz in EX-Zonen

Geeignet:

z. B. leitfähiger oder ableitfähiger PVC-/Gummiboden mit Erdungsanschluss, kombiniert mit ESD-Schutzkleidung und Ableitkonzept.

Beispiel 2:

ESD-Schutzzone – Elektronikfertigung / Prüfplatz

Ziel:

Schutz empfindlicher Elektronikbauteile vor Schäden durch statische Entladung (z. B. Chips, Leiterplatten).

Benötigt wird:

- Ableitfähige Arbeitsmatte (10⁶ 10⁹ Ohm)
- ESD-Kleidung, z. B. ableitfähiger Kittel
- Erdungsarmbänder mit Erdungskabel
- Antistatische Verpackung (meist > 10⁹ Ohm, verhindert Aufladung)

Warum "nicht leitfähig"?

Weil ein zu geringer Widerstand (z. B. <10³ Ohm) beim Entladen einen Stromstoß verursachen kann – das schädigt die Bauteile.

Zusammengefasst:

Anwendung	Benötigt man	Typischer Widerstand
EX-Zone / explosionsgefährlich	Ableitfähig oder leitfähig	< 10 ⁸ Ω, mit Erdung
ESD-Arbeitsplatz	Ableitfähig	$10^6 - 10^9 \Omega$
Allgemeine Umgebung (präventiv)	Antistatisch	> 10 ⁹ Ω (nicht ableitend)