

Frage

Was ist ein hybrides Gemisch und worin besteht die Gefahr bei hybriden Gemischen?

Antwort:

Ein hybrides Gemisch ist ein *explosionsfähiges Gemisch*, das gleichzeitig aus brennbaren Gasen oder Dämpfen und brennbaren Stäuben besteht. Es handelt sich also um eine Kombination aus zwei unterschiedlichen brennbaren Phasen:

- Gas/Dampf (z. B. Lösemitteldämpfe)
- Staub (z. B. Mehl, Kunststoffpulver, Metallstaub)

Definition (gemäß TRGS 720):

"Hybrides Gemisch" ist ein Gemisch aus einer explosionsfähigen Atmosphäre aus Gasen, Dämpfen oder Nebeln und brennbaren Stäuben, das ebenfalls explosionsfähig sein kann.

Besonderheit:

Hybride Gemische zeichnen sich dadurch aus, dass brennbare Stoffe in unterschiedlichen physikalischen Zustandsformen gleichzeitig vorliegen. Typische Konstellationen sind die drei bekanntesten Beispiele:

- Methan in Kombination mit Kohlenstaub,
- Propan gemeinsam mit Polypropylenstaub,
- Vinylchlorid zusammen mit PVC-Staub.

Solche hybriden Gemische treten insbesondere in Prozessen zur Abscheidung organischer Feststoffe aus Lösungsmitteln auf – etwa bei der Anwendung von Sprüh- oder Zerstäubungstrocknern.

Ein hybrides Gemisch kann auch dann eine explosionsfähige Atmosphäre darstellen, wenn die Einzelkonzentrationen von Gas/Dampf oder Staub jeweils unterhalb ihrer spezifischen Explosionsgrenzen liegen. Es wird daher immer empfohlen, hybride Gemische als explosionsfähig einzustufen, sobald die Gaskonzentration etwa 20 % bis 25 % der unteren Explosionsgrenze (UEG) überschreitet. Liegt die Konzentration des Gases bzw. Dampfes unterhalb von 10 % der UEG, ist typischerweise nicht von einer explosionsfähigen hybriden Atmosphäre auszugehen.

Gefahr von hybriden Gemischen

Hybride Gemische stellen ein erhöhtes Explosionsrisiko dar – insbesondere durch folgende Faktoren:

1. Niedrigere untere Explosionsgrenze (UEG):

Die UEG des hybriden Gemischs kann deutlich unter der UEG der Einzelkomponenten liegen. → Die Explosionsgefahr besteht schon bei geringeren Konzentrationen.

 Aufgrund der energetischen Beiträge beider Brennstoffkomponenten kann bereits eine explosionsfähige Atmosphäre vorliegen, auch wenn die unteren Explosionsgrenzen der Einzelsubstanzen jeweils unterschritten werden.

2. Stärkere Explosionswirkung:

Die Kombination kann zu einer höheren Explosionswucht führen – z. B. durch zusätzliche Turbulenz, besseren Sauerstoffzutritt oder eine Kettenreaktion zwischen Phasen.

3. Erhöhte Zündempfindlichkeit:

Hybridgemische sind oft leichter zündbar, da z. B. die Dämpfe das Staub/Luft-Gemisch leichter entzünden oder umgekehrt.

 Mit zunehmendem Gehalt an brennbarem Gas oder Dampf nimmt die Mindestzündtemperatur nahezu linear ab, was das Zündrisiko erhöht.

4. Unterschätzte Gefahr:

In der Praxis werden Hybridgemische oft nicht erkannt, da die Gefahr von Gas/Dampf und Staub getrennt betrachtet wird – obwohl sich beide gleichzeitig im Raum befinden können.

Beispiel aus der Praxis:

In einer industriellen Anwendung mit organischen Lösungsmitteln und feinem Mehlstaub (z. B. beim Mischen von Teig mit Aromastoffen) kann ein hybrides Gemisch entstehen, wenn:

- Lösemitteldämpfe aus der Zutat entweichen
- gleichzeitig Mehlstaub in der Luft schwebt

Ein einziger Zündfunke (z. B. von einer elektrischen Komponente oder Reibung) kann dann die Explosion auslösen.

Technische Konsequenz:

- Bewertungspflicht im Explosionsschutzdokument gemäß § 6 Abs. 9 GefStoffV
- Berücksichtigung hybrider Gemische in der Zonenklassifizierung und Zündquellenbewertung (siehe auch TRGS 720, TRGS 721, TRGS 722)
- Besondere Schutzmaßnahmen notwendig, da Standardmaßnahmen für reine Staub- oder Gasatmosphären oft nicht ausreichen